Quiz I MTH 111, Spring 2017

Ayman Badawi

QUESTION 1. 1. Given $f_1 = (-5, 2), f_2 = (1, 2)$ are the foci of an ellipse and k = 8 is the ellipse constant.

(i) Sketch roughly such ellipse.

(ii) Find all 4 vertices

(iii) Find the equation of the ellipse.

QUESTION 2. Let $-12(y+2) = (x-3)^2$.

- (i) Find the focus and the vertex.
- (ii) Find the equation of the the directrix line.
- (iii) Sketch a rough graph of such parabola.

Faculty information

Quiz II: MTH 111, Spring 2017

Ayman Badawi

QUESTION 1. Consider the hyperbola
$$rac{(y-5)^2}{4} - rac{(x+2)^2}{12} = 1$$

(i) Sketch roughly such hyperbola .

(ii) Find the constant k.

- (iii) Find V_1, V_2 (the two vertices of such hyperbola)
- (iv) Find F_1, F_2 (the foci of such hyperbola)

QUESTION 2. Let v = < -4, 3 >.

(i) Find |v|

- (ii) If (-8, 2) is the initial point of v, what is the terminal point of v?
- (iii) Is w = <2,3> orthogonal (perpendicular) to v? If not, then find the angle between them.

Faculty information

Quiz III: MTH 111, Spring 2017

Ayman Badawi

QUESTION 1. (i) Let $V = \langle 2, -2, -1 \rangle$, $W = \langle 4, 3, 0 \rangle$. Find $Proj_W^V$. Then find $|Proj_W^V|$.

(ii) Find a parametric equations of the line that passes through the two point: M = (1, 2, 5) and N = (6, -3, 7).

(iii) Let M = (4, 2) and N = (-5, 0). Draw the Projection vector M over N (i.e. draw $Proj_N^M$)

(iv) Find a parametric equations of the line that passes through the point M = (1, 2) and with direction vector $\langle 5, 7 \rangle$.

Faculty information

___, ID _____

MTH 111 Math for Architects Spring 2017, 1–1

Quiz IV: MTH 111, Spring 2017

Ayman Badawi

QUESTION 1. (i) Let $L_1 : x = 2t - 1$, y = t + 2, Z = 3t, $L_2 : x = 2s - 5$, y = s, z = -s + 6. If L_1 intersects L_2 , find the intersection point.

(ii) Find an equation of the plane that passes through (0, 1, 2), (-1, 2, 0), (4, 2, 1).

(iii) Can we draw the vector v = < 3, -2, 1 > inside the plane 2x + y - 4z = 12? EXPLAIN

Faculty information

___, ID _____

MTH 111 Math for Architects Spring 2017, 1–1

Quiz V: MTH 111, Spring 2017

Ayman Badawi

QUESTION 1. (i) Let $P_1: x + 2y - z = 4$, $P_2: -x - y + z = 2$. If P_1 intersects P_2 find the intersection line.

(ii) Let $P_1: x + y + z = 2$, $P_2: -x - z = 4$, $P_3: -2x - 2y - z = 0$. If the three planes intersect, what is the intersection?

Faculty information

Quiz VI: MTH 111, Spring 2017

Ayman Badawi

QUESTION 1. find y' (Do not simplify)

(i) $y = 3x^4 - 7x + 4$

(ii) $y = \sqrt{3x+2} - \frac{5}{x} + 1$

(iii) $y = 6(\sqrt[5]{(x^2 + 10x)^3}) - x$

(iv)
$$\frac{x^6 + 4x^4 - 7}{x^3}$$

QUESTION 2. Find the equation of the tangent line to the curve of $f(x) = -4x^3 + 7x + 11$ when x = 2

Faculty information

© copyright Ayman Badawi 2017

Quiz VII: MTH 111, Spring 2017

Ayman Badawi

QUESTION 1. find y' (Do not simplify)

(i) $y = (\sqrt{x} + 3x)^3 (4x - 2)^5$

(ii) $y = (3x^2 - 6x + 3)^{10}(7x + 2)^6$ (it is boring...enough of product formula)

–, ID –

QUESTION 2. Let $f(x) = x^3 - 3x^2 - 9x + 8$

For what values of x does f(x) increase?

For what values of x does f(x) decrease?

Find all local minimum points and local maximum points.

Roughly, sketch the curve of f(x)

Faculty information